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Abstract— We provide a Polynomial Time Approximation
Scheme for the multi-dimensional unit-demand pricing problem,
when the buyer’s values are independent (but not necessarily
identically distributed.) For all ε > 0, we obtain a (1+ε)-factor
approximation to the optimal revenue in time polynomial, when
the values are sampled from Monotone Hazard Rate (MHR)
distributions, quasi-polynomial, when sampled from regular
distributions, and polynomial in npoly(log r), when sampled
from general distributions supported on a set [umin, rumin].
We also provide an additive PTAS for all bounded distributions.

Our algorithms are based on novel extreme value theorems
for MHR and regular distributions, and apply probabilistic
techniques to understand the statistical properties of revenue
distributions, as well as to reduce the size of the search space
of the algorithm. As a byproduct of our techniques, we establish
structural properties of optimal solutions. We show that, for all
ε > 0, g(1/ε) distinct prices suffice to obtain a (1 + ε)-factor
approximation to the optimal revenue for MHR distributions,
where g(1/ε) is a quasi-linear function of 1/ε that does not
depend on the number of items. Similarly, for all ε > 0
and n > 0, g(1/ε · log n) distinct prices suffice for regular
distributions, where n is the number of items and g(·) is a
polynomial function. Finally, in the i.i.d. MHR case, we show
that, as long as the number of items is a sufficiently large
function of 1/ε, a single price suffices to achieve a (1 + ε)-
factor approximation.

Our results represent significant progress to the single-bidder
case of the multidimensional optimal mechanism design prob-
lem, following Myerson’s celebrated work on optimal mecha-
nism design [Myerson 1981].

1. INTRODUCTION

Here is a natural pricing problem: A seller has n items

to sell to a buyer who is interested in buying a single

item. The seller wants to maximize her profit from the

sale, and wants to leverage stochastic knowledge she has

about the buyer to achieve this goal. In particular, we

assume that the seller has access to a distribution F from

which the values (v1, . . . , vn) of the buyer for the items

are drawn. Given this information, she needs to compute

prices p1, . . . , pn for the items to maximize her revenue,

assuming that the buyer is quasi-linear—i.e. will buy the

item i maximizing vi − pi, as long as this difference is

positive. Hence, the seller’s expected payoff from a price
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vector P = (p1, . . . , pn) is

RP =

n∑
i=1

pi·Pr
[
(i = argmax{vj−pj}) ∧ (vi−pi ≥ 0)

]
,

(1)

where we assume that the argmax breaks ties in a

consistent way, if there are multiple maximizers. A more

sophisticated seller could try to improve her payoff by

pricing lotteries over items, i.e. price randomized alloca-

tions (see [3],) albeit this may be less natural than item

pricing.

While the problem looks simple, it exhibits a rich

behavior depending on the nature of F . For example, if F
assigns the same value to all the items with probability

1, i.e. when the buyer always values all items equally,

the problem degenerates to—what Economists call—a

single-dimensional setting. In this setting, it is obvious

that lotteries do not improve the revenue and that an

optimal price vector should assign the same price to

all items. This observation is a special case of a more

general, celebrated result of Myerson [15] on optimal

mechanism design (i.e. the multi-buyer version of the

above problem, and generalizations thereof.) Myerson’s

result provides a closed-form solution to this generalized

problem in a single sweep that covers many settings, but

only works under the same limiting assumption that every

buyer is single-dimensional, i.e. receives the same value

from all the items (in general, the same value from all

outcomes where she is provided service.)

Following Myerson’s work, a large body of research

in both Economics and Engineering has been devoted

to extending this result to the multi-dimensional setting,

i.e. when the buyers’ values come from general dis-

tributions. And while there has been sporadic progress

(see survey [14] and its references,) it appears that we

are far from an optimal multi-dimensional mechanism,

generalizing Myerson’s result. In particular, there is no

optimal solution known to even the single-buyer problem

presented above. Even the ostensibly easier version of

that problem, where the values of the buyer for the n
items are independent and supported on a set of cardi-

nality 2 appears challenging. Incidentally, the problem is

trickier than what it originally seems, as several intuitive

properties that one would expect from the optimal solu-

tion fail to hold. See the full version of this paper [5] for

a discussion of these intricacies.



Motivated by the importance of the problem to Eco-

nomics, and intrigued by its simplicity and apparent

difficulty, we devote this paper to the multi-dimensional

pricing problem. Our main contribution is to develop

the first near-optimal algorithms for this problem, when

the buyer’s values are independent (but not necessarily

identically distributed) random variables.

Previous work on this problem by Chawla et al. [6], [7]

provides a factor 2 approximation to the revenue achieved

by the optimal price vector. The elegant observation

enabling this result is to consider the following mental

experiment: suppose that the unit-demand buyer is split

into n “copies” t1, . . . , tn. Copy ti is only interested in

item i and her value for that item is drawn from the

distribution Fi (where Fi is the marginal of F on item

i), independently from the values of the other copies.

On the other hand, the seller has the same feasibility

constraints as before: only one item can be sold in this

auction. It is intuitively obvious and can be formally

established that the seller in the latter scenario is in

better shape: there is more competition in the market

and this can be exploited to extract more revenue. So the

revenue of the seller in the original scenario can be upper

bounded by the revenue in the hypothetical scenario.

Moreover, the latter is a single-parameter setting; hence,

we understand exactly how its optimal revenue behaves

by Myerson’s result. So we can go back to our original

setting and design a mechanism whose revenue comes

close to Myerson’s revenue in the hypothetical scenario.

Using this approach, [7] obtains a 2-approximation to the

optimal revenue. Moreover, if the distributions {Fi}i are

regular (this is a commonly studied class of distributions

in Economics,) the corresponding price vector can be

computed efficiently.

Nevertheless, there is an inherent loss in the approach

outlined above, as the revenue obtained by the sought-

after mechanism will eventually be compared to a revenue

that is not the optimal achievable revenue in the real

setting, but the optimal revenue in a hypothetical setting;

and as far as we know this could be up to a factor of 2
larger than the real one. So it could be that this approach

is inherently limited to constant factor approximations.

We are interested instead in computationally efficient

pricing mechanisms that achieve a (1− ε)-fraction of the

optimal revenue, for arbitrarily small ε. We show

Theorem 1 (PTAS for MHR Distributions). For all ε >
0, there is a Polynomial Time Approximation Scheme 1 for
computing a price vector whose revenue is a (1+ε)-factor
approximation to the optimal revenue, when the values
of the buyer are independent and drawn from Monotone
Hazard Rate distributions. (This is a commonly studied

1Recall that a Polynomial Time Approximation Scheme (PTAS) is a
family of algorithms {Aε}ε, indexed by a parameter ε > 0, such that
for every fixed ε > 0, Aε runs in time polynomial in the size of its
input.

class of distributions in Economics—see Section 2.) For
all ε > 0, the algorithm runs in time npoly(1/ε).

Theorem 2 (Quasi-PTAS for Regular Distributions). For
all ε > 0, there is a Quasi-Polynomial Time Approxima-
tion Scheme 2 for computing a price vector whose revenue
is a (1+ ε)-factor approximation to the optimal revenue,
when the values of the buyer are independent and drawn
from regular distributions. (These contain MHR and are
also commonly studied in Economics—see Section 2.) For
all ε > 0, the algorithm runs in time npoly(log n,1/ε).

Theorem 3 (General Algorithm). For all ε > 0, there is
an algorithm for computing a price vector whose revenue
is a (1+ ε)-factor approximation to the optimal revenue,
whose running time is npoly( 1

ε ,log r) when the values of
the buyer are independent and distributed in an interval
[umin, rumin].

3

Theorem 4 (Additive PTAS–General Distributions). For
all ε > 0, there is a PTAS for computing a price vector
whose revenue is within an additive ε of the optimal
revenue, when the values of the buyer are independent
and distributed in [0, 1].

Structural Theorems: Our approach is different than

that of [6], [7] in that we study directly the optimal

revenue (as a random variable,) rather than only relating

its expectation to a benchmark that may be off by a

constant factor. Clearly, the optimal revenue is a function

of the values (which are random) and the optimal price

vector (which is unknown). Hence it may be hard to pin

down its distribution exactly. Nevertheless, we manage to

understand its statistical properties sufficiently to deduce

the following interesting structural theorems.

Theorem 5 (Structural 1: A Constant Number of Dis-

tinct Prices Suffice for MHR Distributions). There exists
a (quasi-linear) function g(·) such that, for all ε, n > 0,
g(1/ε) distinct prices suffice for a (1+ ε)-approximation
to the optimal revenue when the buyer’s values for the
n items are independent and MHR. These distinct prices
can be computed efficiently from the value distributions.

Theorem 6 (Structural 2: A Polylog Number of Distinct

Prices Suffice for Regular Distributions). There exists
a (polynomial) function g(·) such that, for all ε, n >
0, g(1/ε · log n) distinct prices suffice for a (1 + ε)-
approximation to the optimal revenue, when the buyer’s
values for the n items are independent and regular.
These prices can be computed efficiently from the value
distributions.

2Recall that a Quasi Polynomial Time Approximation Scheme
(Quasi-PTAS) is a family of algorithms {Aε}ε, indexed by a parameter
ε > 0, such that for every fixed ε > 0, Aε runs in time quasi-
polynomial in the size of its input.

3We point out that a straightforward application of the discretization
proposed by Nisan (see [6]) or Hartline and Koltun [12] would only

give a
(
1
ε
log r

)O(n)
-time algorithm.



Theorem 5 shows that, when the values are MHR inde-

pendent, then only the desired approximation ε dictates

the number of distinct prices that are necessary to achieve

a (1 + ε)-approximation to the optimal revenue, and the

number of items n as well as the range of the distributions

are irrelevant (!) Theorem 6 generalizes this to a mild

dependence on n for regular distributions. Establishing

these theorems is quite challenging, as it relies on a deep

understanding of the properties of the tails of MHR and

regular distributions. For this purpose, we develop novel

extreme value theorems for these classes of distributions

(Theorems 12 and 14 in Sections 3 and 4 respectively.)

Our theorems bound the size of the tail of the maximum of

n independent (but not necessarily identically distributed)

random variables, which are MHR or regular respectively,

and are instrumental in establishing the following trun-

cation property: truncating all the values into a common

interval of the form [α, poly(1/ε)α] in the MHR case,

and [α, poly(n, 1/ε)α] in the regular case, for some α that

depends on the value distributions, only loses a fraction

of ε of the optimal revenue. This is quite remarkable,

especially in the case where the value distributions are

non-identical. Why should most of the contribution to

the optimal revenue come from a restricted set as above,

when each of the underlying value distributions may

concentrate on different supports? We expect that our

extreme value theorems will be useful in future work,

and indeed they have already been used [9]. As a final

remark, we would like to point out that extreme value

theorems have been obtained in Statistics for large classes

of distributions [10], and indeed those theorems have

been applied earlier in optimal mechanism design [2].

Nevertheless, known extreme value theorems are typi-

cally asymptotic, only hold for maxima of i.i.d. random

variables, and are not known to hold for all MHR or

regular distributions.

Covers of Revenue Distributions: Our structural the-

orems enable us to significantly reduce the search space

for an (approximately) optimal price vector. Indeed, if the

values are i.i.d., we can easily establish Theorems 1, 2

and 3, using the aforementioned structural theorems and

exploiting the symmetry across items. Nevertheless, our

value distributions are not necessarily identically dis-

tributed, so the search space remains exponentially large

even for the MHR case, where a constant (function of

ε only) number of distinct prices suffice by Theorem 5.

Even if there are only 2 possible prices per item, but the

items are not identically distributed, how can we decide

efficiently what price to assign to each item?

The natural approach would be to cluster the distri-

butions into a small number of buckets, containing dis-

tributions with similar statistical properties, and proceed

to treat all items in a bucket as essentially identical.

However, the problem at hand is not sufficiently smooth

for us to perform such bucketing into a small number of

buckets, and several intuitive bucketing approaches fail.

We can obtain a delicate discretization of the support of

the distributions into a small set, but cannot discretize

the probabilities used by these distributions into coarse-

enough accuracy, arriving at an impasse with discretiza-

tion ideas.

Our next conceptual idea is to shift the focus of atten-

tion from the space of input value distributions, which

is inherently exponential, to the space of all possible

revenue distributions, which are scalar random variables.

(As we mentioned earlier, the revenue from a given price

vector can be viewed as a random variable that depends

on the values.) There are still exponentially many possible

revenue distributions (one for each price vector,) but we

find a way to construct a sparse δ-cover of this space

under the total variation distance between distributions.

The cover is implicit, i.e. it has no succinct closed-form

description. We argue instead that it can be produced by a

dynamic program, which considers prefixes of the items

and constructs sub-covers for the revenue distributions

induced by these prefixes, pruning down the size of the

cover before growing it again to include the next item.

Once a cover of the revenue distributions is obtained

in this way, we argue that there is only a δ-fraction of

revenue lost by replacing the optimal revenue distribution

with its proxy in the cover. The high-level structure of

the argument is provided in Section 6, and the details

are in Section 7. The proofs of our algorithmic results

(Theorems 1, 2, 3 and 4) can be found in the full paper.

Extensions: A natural conjecture is that, when the

distributions are not widely different, a single price

should suffice for extracting a (1 − ε)-fraction of the

optimal revenue; that is, as long as there is a sufficient

number of items for sale. We show such a result in the

case that the buyer’s values are i.i.d. according to a MHR

distribution.

Theorem 7 (Structural 3 (i.i.d.): A Single Price Suffices

for MHR Distributions). There is a function g(·) such
that, for any ε > 0, if the number of items n > g(1/ε)
then a single price suffices for a (1 + ε)-factor approxi-
mation to the optimal revenue, if the buyer’s values are
i.i.d. and MHR.

Another interesting byproduct of our techniques is that

any constant-factor approximation to the optimal pricing

can be converted into a PTAS or a quasi-PTAS respec-

tively in the case of MHR or regular value distributions.

This result is a direct product of our extreme value

theorems, which can be boot-strapped with a constant

factor approximation to OPT. Having such approximation

would obviate the need to use our generic algorithm,

outlined in the proofs of Theorems 5 and 6.

Theorem 8 (Constant Factor to Near-Optimal Approxi-

mation). If we have a constant-factor approximation to
the optimal revenue of an instance of the pricing problem



where the values are either MHR or regular, we can use
this to speed-up our algorithms of Theorems 1 and 2.

Future and Related Work. In conclusion, this paper

provides the first near-optimal efficient algorithms for

interesting instances of the multi-dimensional mechanism

design problem, for a unit-demand bidder whose val-

ues are independent (but not necessarily identically dis-

tributed.) Our results provide algorithmic, structural and

probabilistic insights into the properties of the optimal

deterministic mechanism for the case of MHR, regular,

and more general distributions. It would be interesting to

extend our results (algorithmic and/or structural) to more

general distributions, to mechanisms that price lotteries

over items [18], [3], to bundle-pricing [13] and to bud-

gets [1], [17]. We can certainly obtain such extensions,

albeit when sizes of lotteries, bundles, etc. are a constant.

We believe that our extreme value theorems, and our

probabilistic view of the problem in terms of revenue

distributions will be helpful in obtaining more general

results. We also leave the complexity of the exact problem

as an open question, and conjecture that it is NP -hard,

referring the reader to [4] for hardness results in the case

of correlated distributions.

Finally, it is important to solve the multi-bidder prob-

lem, extending Myerson’s celebrated mechanism to the

multi-dimensional setting, and the results of [1], [7]

beyond constant factor approximations. In recent work,

Daskalakis and Weinberg [9] have made progress in

this front obtaining efficient mechanisms for multi-bidder

multi-item auctions. These results are neither subsumed,

nor subsume the results in the present paper. Indeed,

we are more general here in that we allow the buyer

to have values for the items that are not necessarily

i.i.d., an assumption needed in [9] if the number of

items is large. On the other hand, we are less general

in that (a) we solve the single-bidder problem and (b)

are near-optimal with respect to all deterministic (i.e.

item-pricing), but not necessarily randomized (lottery-

pricing) mechanisms. Strikingly, the techniques of the

present paper are essentially orthogonal to those of [9].

The approach of [9] uses randomness to symmetrize the

solution space, coupling this symmetrization with Linear

Programming formulations of the problem. Our paper

takes instead a probabilistic approach, developing ex-

treme value theorems to characterize the optimal solution,

and designing covers of revenue distributions to obtain

efficient algorithmic solutions. It is tempting to conjecture

that our approach here, combined with that of [9] would

lead to more general results. Indeed, our extreme value

theorems found use in [9], but we expect that significant

technical work is required to go forward.

2. PRELIMINARIES

For a random variable X we denote by FX(x) the

cumulative distribution function of X , and by fX(x)

its probability density function. We also let uX
min =

sup{x|FX(x) = 0} and uX
max = inf{x|FX(x) = 1}.

uX
max may be +∞, but we assume that uX

min ≥ 0,

since the distributions we consider in this paper represent

value distributions of items. Moreover, we often drop the

subscript or superscript of X , if X is clear from context.

A natural question is how distributions are provided as

input to an algorithm (explicitly or with oracle access).

We discuss this technical issue in the appendix. We also

define precisely what it means for an algorithm to be

“efficient” in each case. We continue with the precise

definition of Monotone Hazard Rate (MHR) and Regular
distributions, which are both commonly studied classes

of distributions in Economics.

Definition 9 (Monotone Hazard Rate Distribution). We
say that a one-dimensional differentiable distribution F
has Monotone Hazard Rate, shortly MHR, if f(x)

1−F (x) is
non-decreasing in [umin, umax].

Definition 10 (Regular Distribution). A one-dimensional
differentiable distribution F is called regular if x −
1−F (x)
f(x) is non-decreasing in [umin, umax].

It is worth noticing that all MHR distributions are also

regular distributions, but there are regular distributions

that are not MHR. The family of MHR distributions

includes such familiar distributions as the Normal, Expo-

nential, and Uniform distributions. The family of regular

distributions contains a broader range of distributions,

such as fat-tail distributions fX(x) ∼ x−(1+α) for α ≥ 1
(which are not MHR). In the full version of the paper, we

establish important properties of MHR and regular distri-

butions. These properties are instrumental in establishing

our extreme value theorems (Theorems 12 and 14 in the

following sections).

We conclude the section by defining two computational

problems that we use in the next sections. For the types

of value distributions we consider, we can show that

these problems are well-defined (i.e. have finite optimal

solutions.)

PRICE: Input: A collection of mutually independent

random variables {vi}ni=1, and some ε > 0.

Output: A vector of prices (p1, . . . , pn) such that the

expected revenue RP under this price vector, defined as

in Eq. (1), is within a (1+ε)-factor of the optimal revenue

achieved by any price vector.

RESTRICTEDPRICE: Input: A collection of mutually

independent random variables {vi}ni=1, a discrete set

P ⊂ R+, and some ε > 0.

Output: A vector of prices (p1, . . . , pn) ∈ Pn such that

the expected revenue RP under this price vector is within

a (1 + ε)-factor of the optimal revenue achieved by any

vector in Pn.



3. EXTREME VALUES OF MHR DISTRIBUTIONS

We reduce the problem of finding a near-optimal

price vector for MHR distributions to finding a near-

optimal price vector for value distributions supported on

a common, balanced interval, where the imbalance of the

interval is only a function of the desired approximation

ε > 0. More precisely,

Theorem 11 (From MHR to Balanced Distributions). Let
V = {vi}i∈[n] be a collection of mutually independent
(but not necessarily identically distributed) MHR random
variables. Then there exists some β = β(V) > 0 such
that for all ε ∈ (0, 1/4), there is a reduction from
PRICE(V, cε log( 1ε )) to PRICE(Ṽ, ε), where Ṽ := {ṽi}i
is a collection of mutually independent random variables
supported on the set [ ε2β, 2 log

1
εβ], and c is some abso-

lute constant.
Moreover, β is efficiently computable from the distribu-

tions of the Xi’s (whether we are given the distributions
explicitly, or we have oracle access to them,) and for
every ε the running time of the reduction is polynomial
in the size of the input and 1

ε . In particular, if we have
oracle access to the distributions of the vi’s, then the
forward reduction produces oracles for the distributions
of the ṽi’s, which run in time polynomial in n, 1/ε, the
input to the oracle and the desired oracle precision.

We discuss the essential elements of this reduction

below. Most crucially, the reduction is enabled by the

following characterization of the extreme values of a

collection of independent, but not necessarily identically

distributed, MHR distributions.

Theorem 12 (Extreme Values of MHR distributions). Let
X1, . . . , Xn be a collection of independent (but not nec-
essarily identically distributed) random variables whose
distributions are MHR. Then there exists some anchoring
point β such that Pr[maxi{Xi} ≥ β/2] ≥ 1 − 1√

e
and

for all ε ∈ (0, 1/4),∫ +∞

2β log 1/ε

t · fmaxi{Xi}(t)dt ≤ 36βε log 1/ε. (2)

Moreover, β is efficiently computable from the distribu-
tions of the Xi’s (whether we are given the distributions
explicitly, or we have oracle access to them.)

Theorem 12 shows that, for all ε, at least a (1 −
O(ε log 1

ε ))-fraction of E[maxi Xi] is contributed to by

values that are no larger than E[maxi Xi] · log 1
ε . Our

result is quite surprising, especially for the case of

non-identically distributed MHR random variables. Why

should most of the contribution to E[maxi Xi] come from

values that are close (within a function of ε only) to the

expectation, when the underlying random variables Xi

may concentrate on widely different supports? To obtain

the theorem one needs to understand how the tails of

the distributions of a collection of independent but not

necessarily identically distributed MHR random variables

contribute to the expectation of their maximum. Our

proof technique is rather intricate, defining a tournament

between the tails of the distributions. Each round of the

tournament ranks the distributions according to the size of

their tails, and eliminates the lightest half. The threshold

β is then obtained by some side-information that the

algorithm records in every round.

Here we only describe the tournament algorithm for

computing β, postponing the proof of Theorem 12 to the

full paper. We start with some useful notation. For all

i = 1, . . . , n, we denote by Fi the distribution of variable

Xi. We also let α
(i)
m := inf

{
x|Fi(x) ≥ 1− 1

m

}
, for all

m ≥ 1. Moreover, we assume that n is a power of 2. If

not, we can always include at most n additional random

variables that are detreministically 0, making the total

number of variables a power of 2.

We proceed with the algorithm. At a high level, the

algorithm proceeds in O(log n) rounds, indexed by t ∈
{0, . . . , log n}, eliminating half of the variables at each

round. The way the elimination works is as follows. In

round t, we compute for each of the variables that have

survived so far the threshold αn/2t beyond which the

size of the tail of their distribution becomes smaller than

1/(n/2t). We then sort these thresholds and eliminate the

bottom half of the variables, recording the threshold of

the last variable that survived this round. The maximum

of these records among the log n rounds of the algorithm

is our β. The pseudocode of the algorithm is given below.

Given that we may only be given oracle access to the

distributions {Fi}i∈[n], we allow some slack η ≤ 1
2 in

the computation of our thresholds so that the computation

is efficient. If we know the distributions explicitly, the

description of the algorithm simplifies to the case η = 0.

Algorithm 1 Algorithm for finding β

1: Define the permutation of the variables π0(i) = i, ∀
i ∈ [n], and the set of remaining variables Q0 = [n].

2: for t := 0 to log n− 1 do
3: For all j ∈ [n/2t], compute some x

(πt(j))
n/2t ∈ [1 −

η, 1+η] ·α(πt(j))
n/2t , for a small constant η ∈ [0, 1/2)

4: Sort these n/2t numbers in decreasing order πt+1

such that

x
(πt+1(1))
n/2t ≥ x

(πt+1(2))
n/2t ≥ . . . ≥ x

(πt+1(n/2
t))

n/2t

5: Qt+1 := { πt+1(i) | i ≤ n/2t+1 }
6: βt := x

(πt+1(n/2
t+1))

n/2t

7: end for
8: Compute x

(πlog n(1))
2 ∈ [1− η, 1 + η] · α(πlog n(1))

2

9: Set βlogn := x
(πlog n(1))
2

10: Output β := maxt βt

Given our understanding of the extreme values of MHR

distributions, our reduction of Theorem 11 from MHR to



Balanced distributions proceeds in the following steps:

• We start with the computation of the threshold β
specified by Theorem 12. This computation can

be done efficiently using the tournament algorithm

described above. Given that Pr[maxi{Xi} ≥ β/2]
is bounded away from 0, β provides a lower bound

to the optimal revenue. (See the full paper for the

precise lower bound we obtain.) Such lower bound is

useful as it implies that, if our transformation loses

revenue that is a small fraction of β, this corresponds

to a small fraction of optimal revenue lost.
• Next, using (2) we show that, for all ε > 0, if we

restrict the prices to lie in the balanced interval [ε ·
β, 2 log( 1ε ) ·β], we only lose a O(ε log 1/ε) fraction

of the optimal revenue;
• Finally, we show that we can efficiently transform

the given MHR random variables {vi}i∈[n] into a

new collection of random variables {ṽi}i∈[n] that

take values in [ ε2 · β, 2 log( 1ε ) · β] and satisfy the

following: a near-optimal price vector for the setting

where the buyer’s values are distributed as {ṽi}i∈[n]
can be efficiently transformed into a near-optimal

price vector for the original setting, i.e. where the

buyer’s values are distributed as {vi}i∈[n].

4. EXTREME VALUES OF REGULAR DISTRIBUTIONS

Our goal is to reduce the problem of finding a near-

optimal pricing for a collection of independent (but not

necessarily identical) regular value distributions to the

problem of finding a near-optimal pricing for a collection

of independent distributions, which are supported on a

common finite interval [umin, umax] with umax/umin ≤
16n8/ε4, where n is the number of distributions and ε is

the desired approximtion. It is important to notice that our

bound on the ratio umax/umin does not depend on the

distributions at hand, just their number and the required

approximation. We also emphasize that the input regular

distributions may be supported on [0,+∞), so it is a

priori not clear if we can truncate these distributions to

any finite set (even of exponential imbalance) without

losing revenue.

Theorem 13 (Reduction from Regular to

Poly(n)-Balanced Distributions). Let V = {vi}i∈[n] be
a collection of mutually independent (but not necessarily
identically distributed) regular random variables. Then
there exists some α = α(V) > 0 such that, for any
ε ∈ (0, 1), there is a reduction from PRICE(V, ε) to
PRICE(Ṽ, ε − Θ(ε/n)), where Ṽ = {ṽi}i∈[n] is a
collection of mutually independent random variables
that are supported on [ εα

4n4 ,
4n4α
ε3 ].

Moreover, we can compute α in time polynomial in n
and the size of the input (whether we have the distribu-
tions of the vi’s explicitly, or have oracle access to them.)
For all ε, the reduction runs in time polynomial in n, 1/ε
and the size of the input. In particular, if we have oracle

access to the distributions of the vi’s, then the forward
reduction produces oracles for the distributions of the
ṽi’s, which run in time polynomial in n, 1/ε, the input
to the oracle and the desired oracle precision.

Our reduction is based on the following extreme value

theorem for regular distributions.

Theorem 14 (Homogenization of the Extreme Values

of Regular Distributions). Let {Xi}i∈[n] be a collection
of mutually independent (but not necessarily identically
distributed) regular random variables, where n ≥ 2. Then
there exists some α = α({Xi}i) such that:

1) α has the following “anchoring” properties:

• for all � ≥ 1, Pr[Xi ≥ �α] ≤ 2/(�n3), for all
i ∈ [n];

• α/n3 ≤ c ·maxz(z · Pr[maxi{Xi} ≥ z]), where
c is an absolute constant.

2) for all ε ∈ (0, 1), the tails beyond 2n2α
ε2 can be

“homogenized”, i.e.

• for any integer m ≤ n, thresholds t1, . . . , tm ≥
t ≥ 2n2α

ε2 , and index set {a1, . . . , am} ⊆ [n]:
m∑
i=1

ti Pr[Xai
≥ ti]

≤
(
t− 2α

ε

)
· Pr

[
max

i
{Xai

} ≥ t
]

+
7ε

n
·
(
2α

ε
· Pr

[
max

i
{Xai} ≥

2α

ε

])
.

Finally, α is efficiently computable from the distributions
of the Xi’s (whether we are given the distributions
explicitly, or have oracle access to them.)

We discuss the meaning of our homogenization theorem

in Appendix B. Given this theorem, Theorem 13 is

obtained as follows.

• First, we compute the threshold α specified in

Theorem 14. This can be done efficiently as stated

in Theorem 14. Now given the second anchoring

property of α, we obtain an Ω(α/n3) lower bound

to the optimal revenue. Such a lower bound is useful

as it implies that we can ignore prices below some

O(εα/n3).
• Next, using our homogenization Theorem 14, we

show that if we restrict a price vector to lie in

[εα/n4, 2n2α/ε2]n, we only lose a O( ε
n ) fraction

of the optimal revenue.
• Finally, we show that we can efficiently transform

the input regular random variables {vi}i∈[n] into a

new collection of random variables {ṽi}i∈[n] that are

supported on [ εα
4n4 ,

4n4α
ε3 ] and satisfy the following:

a near-optimal price vector for when the buyer’s

values are distributed as {ṽi}i∈[n] can be efficiently

transformed into a near-optimal price vector for

when the buyer’s values are distributed as {vi}i∈[n].



5. FROM CONTINUOUS TO DISCRETE DISTRIBUTIONS

The expected revenue can be sensitive even to small

perturbations of the prices and the probability distribu-

tions. So it is a priori not clear whether there is a coarse

discretization of the input distributions and the search

space for price vectors that does not cost us a lot of

revenue. We show that there is such discretization, but

needs to be done carefully. Our discretization result is

summarized in Theorem 15. Note that the discretization

we obtain does not eliminate the exponentiality of the

search space or the space of input distributions.

Theorem 15 (Price/Value Distribution Discretization).
Let V = {vi}i∈[n] be a collection of mutually in-
dependent random variables supported on a finite set
[umin, umax] ⊂ R+, and let r = umax

umin
≥ 1. For

any ε ∈
(
0, 1

(4�log r�)1/6
)

, there is a reduction from

PRICE(V, ε) to RESTRICTEDPRICE(V̂,P,Θ(ε8)), where
• V̂ = {v̂i}i∈[n] is a collection of mutually inde-

pendent random variables that are supported on a
common set of cardinality O

(
log r
ε16

)
;

• |P| = O
(

log r
ε16

)
.

Moreover, assuming that the set [umin, umax] is speci-
fied in the input, 4 we can compute the (common) support
of the distributions of the variables {v̂i}i as well as the
set of prices P in time polynomial in log umin, log umax

and 1/ε. We can also compute the distributions of the
variables {v̂i}i∈[n] in time polynomial in the size of the
input and 1/ε, if we have the distributions of the variables
{vi}i∈[n] explicitly. If we have oracle access to the
distributions of the variables {vi}i∈[n], we can construct
an oracle for the distributions of the variables {v̂i}i∈[n],
running in time polynomial in log umin, log umax, 1/ε,
the input to the oracle and the desired precision.

That prices can be discretized follows immediately from

a discretization lemma attributed to Nisan [6] (see also

a related discretization in [12].) The discretization of

the value distributions is inspired by Nisan’s lemma, but

requires an intricate twist in order to reduce the size of

the support to be linear in log r rather than linear in

r2 log r which is what a straightforward modification of

the lemma gives. (Indeed, quite some effort is needed

to get the former bound.) For more details, we refer

interested readers to our full paper.

6. PROBABILISTIC COVERS OF REVENUE

DISTRIBUTIONS

Let V := {vi}i be an instance of PRICE, where the vi’s
are mutually independent random variables distributed on

a finite set [umin, umax] according to distributions {Fi}i,
and let ROPT be the optimal expected revenue for V .

4The requirement that the set [umin, umax] is specified as part of
the input is only relevant if we have oracle access to the distributions of
the vi’s, as if we have them explicitly we can easily find [umin, umax].

Our goal is to compute a price vector with expected

revenue (1−ε)ROPT . Theorem 15 of Section 5 provides

an efficient reduction of this problem to the (1 − δ)-
approximation of a discretized problem, where both the

values and the prices come from discrete sets whose

cardinality is O(log r/δ2), where r = umax

umin
and δ =

O(ε8). For convenience, we denote by {F̂i}i the resulting

discretized distributions, by {v̂i}i a collection of mutually

independent random variables distributed according to the

F̂i’s, by {v(1), v(2), . . . , v(k1)} the (common) support of

all the F̂i’s, and by {p(1), p(2), . . . , p(k2)} the set of avail-

able price levels, where both k1 and k2 are O(log r/δ2).
It is worth noting that the set of prices obtained from

Theorem 15 satisfies min{p(i)} ≥ umin/(1 + δ) and

max{p(i)} ≤ umax, and that these prices are points of a

geometric sequence of ratio 1/(1− δ2).

Having discretized the support sets of values and

prices, a natural idea that one would like to use to go

forward would be to further discretize the distributions

{F̂i}i by rounding the probabilities they assign to every

point in their support to integer multiples of some fraction

σ = σ(ε, r) > 0, i.e. a fraction that does not depend

on n. If such discretization were feasible, the problem

would be greatly simplified. For example, if additionally

r were an absolute constant or a function of ε only,

there would only be a constant number of possible value

distributions (as both the cardinality of the support of

the distributions and the number of available probability

levels would be a function of ε only.) In such case, we

could try to develop an algorithm tailored to a constant

number of available value distributions. This is still not

easy to do (as we don’t even know how to solve the i.i.d.

case of our problem), but is definitely easier to dream of.

Nevertheless, the approach breaks down as preserving the

revenue while doing a coarse rounding of the probabilities

appears difficult, and the best discretization we can obtain

requires accuracy which is inverse polynomial in n.

Given the apparent impasse towards eliminating the

exponentiality from the input space of our problem, our

solution evolves in a radically different direction. To ex-

plain our approach, let us view our problem in the graph-

ical representation of Figure 1. Circuit C takes as input a

price vector p1, . . . , pn and outputs the distribution FR̂P

of the revenue of the seller under this price vector. Indeed,

the revenue of the seller is a random variable R̂P whose

value depends on the variables {v̂i}i∈[n]. So in order to

compute the distribution of the revenue the circuit also

uses the distributions {F̂i}i∈[n], which are hard-wired

into the circuit. Let us denote the expectation of R̂P as

R̂P .

Given our restriction of the prices to the finite set

{p(1), p(2), . . . , p(k2)}, there are kn2 possible inputs to

the circuit, and a corresponding kn2 number of possible

revenue distributions that the circuit can produce. Our

main conceptual idea is this: instead of worrying about



F̂2F̂1

��

1 2
… 

F̂3 F̂n

…
 

p1

p2

pn

FR̂P

Figure 1. The Revenue Distribution.

the set of inputs to circuit C, we focus on the revenue
distribution directly, constructing a probabilistic cover
(under an appropriate metric) of all the possible revenue
distributions that can be output by the circuit. The two

crucial properties of our cover are the following: (a) it has

cardinality O(npoly( 1
ε ,log r)), and (b) for any possible rev-

enue distribution that the circuit may output, there exists

a revenue distribution in our cover with approximately

the same expectation.

Details of the Cover.: At a high level, the way we

construct our cover is via dynamic programming, whose

steps are interleaved with coupling arguments pruning

the size of the DP table before proceeding to the next

step. Intuitively, our dynamic program sweeps the items

from 1 through n, maintaining a cover of the revenue

distributions produced by all possible pricings on a prefix

of the items. More precisely, for each prefix of the

items, our DP table keeps track of all possible feasible

collections of k1 × k2 probability values, where Pri1,i2 ,

i1 ∈ [k1], i2 ∈ [k2], denotes the probability that the item

with the largest value-minus-price gap (i.e. the item of

the prefix that would have been sold in a sale that only

sales the prefix of items) has value v(i1) for the buyer

and is assigned price p(i2) by the seller. I.e. we memoize

all possible (winning-value, winning-price) distributions

that can arise from each prefix of items. The reasons we

decide to memoize these distributions are the following:

• First, if we have these distributions, we can compute

the expected revenue that the seller would obtain, if

we restricted our sale to the prefix of items.
• Second, when our dynamic program considers as-

signing a particular price to the next item, then hav-

ing the (winning-value, winning-price) distribution

on the prefix suffices to obtain the new (winning-

value,winning-price) distribution that also includes

the next item. I.e., if we know these distributions,

we do not need to keep track of anything else in

the history to keep going. Observe that it is crucial

here to maintain the joint distribution of both the

winning-value and the winning-price, rather than just

the distribution of the winning-price.
• In the end of the program, we can look at all feasible

(winning-value,winning-price) distributions for the

full set of items to find the one achieving the best

revenue; we can then follow back-pointers stored in

our DP table to uncover a price vector consistent

with the optimal distribution.

All this is both reasonable, and fun, but thus far we

have achieved nothing in terms of reducing the number

of distributions FR̂p
in our cover. Indeed, there could be

exponentially many (winning-value,winning-price) dis-

tributions consistent with each prefix, so that the total

number of distributions that we have to memoize in the

course of the algorithm is exponentially large. To obtain a

polynomially small cover we show that we can be coarse

in our bookkeeping of the (winning-value, winning-price)

distributions, without sacrificing much revenue. Indeed, it

is exactly here where viewing our problem in the “upside-

down” way illustrated in Figure 1 (i.e. targeting a cover of

the output of circuit C rather than figuring out a sparse

cover of the input) is important: we show that, as far

as the expected revenue is concerned, we can discretize

probabilities into multiples of 1
(nr)3 after each round of

the DP without losing much revenue, and while keeping

the size of the DP table from exploding. That the loss

due to pruning the search space is not significant follows

from a joint application of the coupling lemma and the

optimal coupling theorem (see, e.g., [11]), after each step

of the Dynamic Program.

7. THE ALGORITHM FOR THE DISCRETE PROBLEM

In this section, we formalize our ideas from the previ-

ous section, providing our main algorithmic result. We

assume that the pricing problem at hand is discrete:

the value distributions are supported on a discrete set

S = {v(1), v(2), . . . , v(k1)}, and the sought after price

vector also lies in a discrete set
{
p(1), . . . , p(k2)

}n
, where

both S and P :=
{
p(1), . . . , p(k2)

}
are given explicitly

as part of the input, while our access to the value

distributions may still be either explicit or via an oracle.

We denote by OPT the optimal expected revenue for this

problem, when the prices are restricted to set P .

The Algorithm.: As a first step, we reduce our prob-

lem into a new one in polynomial-time, where addition-

ally the probabilities that the value distributions assign

to each point in S is an integer multiple of 1/(rn)3,

where r = max
{

p(j)

p(i)

}
. The loss in revenue from this

reduction is at most an additive 4k1

rn2 min{p(i)}. Moreover,

the construction is explicit, so from now on we can

assume that we know the value distributions explicitly.

Let us denote by {F̂i}i the rounded distributions and set

m := rn throughout this section.

The second phase of our algorithm is the Dynamic

Program outlined in Section 6. We provide some further

details on this next. Our program computes a Boolean

function g(i, P̂r), whose arguments lie in the following

range: i ∈ [n] and P̂r = (P̂r1,1, P̂r1,2, . . . , P̂rk1,k2),

where each P̂ri1,i2 ∈ [0, 1] is an integer multiple of 1
m3 .

The function g is stored in a table that has one cell for



every setting of i and P̂r, and the cell contains a 0 or a 1
depending on the value of g at the corresponding input.

In the terminology of the previous section, argument i
indexes the last item in a prefix of the items and P̂r is a

(winning-value, winning-price) distribution in multiples

of 1
m3 . If P̂r can arise from some pricing of the items

1 . . . i (up to discretization of probabilities into multiples

of 1
m3 ), we intend to store g(i, P̂r) = 1; otherwise we

store g(i, P̂r) = 0.

Due to lack of space we postpone the details of the

Dynamic Program to the full paper.

Very briefly, the table is filled in a bottom-up fashion

from i = 1 through n. At the end of the i-th iteration,

we have computed all feasible “discretized” (winning-

value,winning-price) distributions for the prefix 1 . . . i,
where “discretized” means that all probabilities have been

rounded into multiples of 1/m3. For the next iteration, we

try all possible prices p(j) for item i+1 and compute how

each of the feasible discretized (winning-value,winning-

price) distributions for the prefix 1 . . . i evolves into a

discretized distribution for the prefix 1 . . . i + 1, setting

the corresponding cell of layer g(i + 1, ·) of the DP

table to 1. Notice, in particular, that we lose accuracy in
every step of the Dynamic Program, as each step involves

computing how a discretized distribution for items 1 . . . i
evolves into a distribution for items 1 . . . i + 1 and then

rounding the latter back again into multiples of 1/m3.

We show in the analysis of our algorithm that the error

accumulating from these roundings can be controlled via

coupling arguments.

After computing g’s table, we look at all cells such that

g(n, P̂r) = 1 and evaluate the expected revenue resulting

from the distribution P̂r, i.e.

R
̂Pr

=
∑

i1∈[k1],i2∈[k2]

p(i2) · P̂ri1,i2 · �v(i1)≥p(i2) .

Having located the cell whose R
̂Pr

is the largest, we

follow back-pointers to obtain a price vector consistent

with P̂r. At some steps of the back-tracing, there may be

multiple choices; we pick an arbitrary one to proceed.

Running Time and Correctness: We bound the al-

gorithm’s running time and revenue. Due to space limi-

tations, we defer the proofs of the following lemmas to

the full version.

Lemma 16. Given an instance of RESTRICTEDPRICE,
where the value distributions are supported on a discrete
set S of cardinality k1 and the prices are restricted to a
discrete set P of cardinality k2, the algorithm described
in this section produces a price vector with expected
revenue at least

OPT −
(
2k1k2
(nr)2

+
16

n

)
·min{P},

where OPT is the optimal expected revenue, min{P} is
the lowest element of P , and r is the ratio of the largest

to the smallest element of P .

Lemma 17. The running time of the algorithm is poly-
nomial in the size of the input and (nr)O(k1k2).

Intuitively, if we did not perform any rounding of

distributions, our algorithm would have been exact, out-

putting an optimal price vector in {p(1), . . . , p(k2)}n.

What we show is that the roundings performed at the

steps of the dynamic program are fine enough that do

not become detrimental to the revenue. To show this,

we use the probabilistic concepts of total variation dis-

tance and coupling of random variables, invoking the

coupling lemma and the optimal coupling theorem after

each step of the algorithm. This way, we show that

the rounded (winning-value,winning-price) distributions

maintained by the algorithm for each price vector are

close in total variation distance to the corresponding exact

distributions arising from these price vectors, culminating

in Lemma 16.
Using Lemmas 16 and 17 and our work in the previous

sections, we obtain our main algorithmic results in this

paper (Theorems 1, 2, 3, and 4). Our analysis gives the

following running times for the whole algorithm. For all

ε > 0, a (1 + ε)-factor approximation to the optimal

revenue can be computed in time nO( 1
ε7

) for MHR, and

nO(
(log(n)9

ε9
) for regular distributions. We only mildly tried

to optimize the constants in our running times, and should

be able to improve them with a more careful analysis.
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APPENDIX

1. Access to Value Distributions
We consider two ways that a distribution may be input

to an algorithm.
Explicitly: In this case the distribution has to be discrete,

and we are given its support as a list of numbers, and the

probability that the distribution places on every point in

the support. If a distribution is provided explicitly to an

algorithm, the algorithm is said to be efficient, if it runs

in time polynomial in the description complexity of the

numbers required to specify the distribution.

As an Oracle: In this case, we are given an oracle

that answers queries about the value of the cumulative

distribution function on a queried point. In particular, a

query to the oracle consists of a point x and a precision

ε, and the oracle outputs a value of bit complexity

polynomial in the description of x and ε, which is within

ε from the value of the cumulative distribution function

at point x. Moreover, we assume that we are given an

anchoring point x∗ such that the value of the cumulative

distribution at that point is between two a priori known

absolute constants c1 and c2, such that 0 < c1 < c2 < 1.

Having such a point is necessary, as otherwise it would

be impossible to find any interesting point in the support

of the distribution (i.e. any point where the cumulative is

different than 0 or 1).
If a distribution is provided to an algorithm as an

oracle, the algorithm is said to be efficient, if it runs in

time polynomial in its other inputs and the bit complexity

of x∗, ignoring the time spent by the oracle to answer

queries (since this is not under the algorithm’s control).
If we have a closed form formula for our input distri-

bution, e.g. if our distribution is N (μ, σ2), we think of

it as given to us as an oracle, answering queries of the

form (x, ε) as specified above. In most common cases,

such an oracle can be implemented so that it also runs

efficiently in the description of the query.

2. Discussion of Theorem 14
In this section we play around with Theorem 14 to

gain some intuition about its meaning:

• Suppose that we set all the ti’s equal to t ≥ 2n2α/ε2.

In this case, the homogenization property of Theorem 14

essentially states that the union bound is tight for t large

enough. Indeed:

Pr
[
max

i
{Xai

} ≥ t
]

≤
(

m∑
i=1

Pr[Xai
≥ t]

)

≤
(
t− 2α

ε

t

)
· Pr

[
max

i
{Xai

} ≥ t
]

+
7ε

tn
·
(
2α

ε
· Pr

[
max

i
{Xai} ≥

2α

ε

])
≤Pr

[
max

i
{Xai

} ≥ t
]

+
7ε

n
·
(
2α

ε
· Pr

[
max

i
{Xai

} ≥ 2α

ε

])
.

This is not surprising, since for all i, the event Xai
≥

t only happens with tiny probability, by the anchoring

property of α.

• Now let’s try to set all the ti’s to the same value t′ >
t ≥ 2n2α/ε2. The homogenization property can be used

to obtain that the probability of the event maxi{Xai
} ≥

t′ scales linearly in t′.

Pr
[
max

i
{Xai

} ≥ t′
]

≤
m∑
i=1

Pr[Xai ≥ t′]

≤
(
t− 2α

ε

t′

)
· Pr

[
max

i
{Xai

} ≥ t
]

+
7ε

t′n
·
(
2α

ε
· Pr

[
max

i
{Xai} ≥

2α

ε

])
≤ 1

t′
·
[
t · Pr

[
max

i
{Xai

} ≥ t
]]

+
7ε

t′n
·
(
2α

ε
· Pr

[
max

i
{Xai

} ≥ 2α

ε

])
.

This follows easily from Markov’s inequality, if the

expression in the brackets is within a constant factor of

E[maxi{Xai
}]. The result is surprising as it is perfectly

possible for that expression to be much smaller than

E[maxi{Xai}].
In the same spirit as the second point above, the

theorem has interesting implications by setting the ti’s
to different values.


